

MATHEMATICS HIGHER LEVEL PAPER 1

Wednesday	5	May	2010	(afternoon))
-----------	---	-----	------	-------------	---

0	0								
---	---	--	--	--	--	--	--	--	--

Candidate session number

2 hours

INSTRUCTIONS TO CANDIDATES

- Write your session number in the boxes above.
- Do not open this examination paper until instructed to do so.
- You are not permitted access to any calculator for this paper.
- Section A: answer all of Section A in the spaces provided.
- Section B: answer all of Section B on the answer sheets provided. Write your session number
 on each answer sheet, and attach them to this examination paper and your cover
 sheet using the tag provided.
- At the end of the examination, indicate the number of sheets used in the appropriate box on your cover sheet.
- Unless otherwise stated in the question, all numerical answers must be given exactly or correct to three significant figures.

Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

SECTION A

Answer all the questions in the spaces provided. Working may be continued below the lines, if necessary.

1.	[Maximum mark: 5]
	Given that $Ax^3 + Bx^2 + x + 6$ is exactly divisible by $(x+1)(x-2)$, find the value of A and the value of B .

2. [Maximum mark: 4]

Shown below are the graphs of y = f(x) and y = g(x).

If $(f \circ g)(x) = 3$, find all possible values of x.

•	• •	•	•	•	•	•	•	•	•	 •	•	•	•	•	•	•	 •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	 •	•	•	•	•	•	•	•	 •	•	•	•	•	•	•	•	•	•	•	•	•
																																					 															-		. .			
																																					 																	. .			
																																					 																	. .			
																																					 																	. .			

- **3.** [*Maximum mark: 7*]
 - (a) Show that the two planes

$$\pi_1 : x + 2y - z = 1$$

 $\pi_2 : x + z = -2$

are perpendicular.

[3 marks]

(b) Find the equation of the plane π_3 that passes through the origin and is perpendicular to both π_1 and π_2 .

[4 marks]

			 								-	 								-						 		 							
		•		•	•		•		·	•		 •	•	•	•		•	•	•	•	 •	•	•	 •	•		•		•						
			 								-	 								-						 		 							

4.	[Maximum	mark:	5

Solve the equation $4^{x-1} = 2^x + 8$.

.....

5. [Maximum mark: 8]

The graph of $y = \frac{a+x}{b+cx}$ is drawn below.

(a)	Find the value of a , the value of b and the value of c .	[4 marks]

(This question continues on the following page)

(Question 5 continued)

(b) Using the values of a, b and c found in part (a), sketch the graph of $y = \left| \frac{b + cx}{a + x} \right|$ on the axes below, showing clearly all intercepts and asymptotes. [4 ma]

6.	[Maximum	mark:	4
v.	<i>[WIUXIMUM]</i>	murk.	4

			Show that if $ a = b $ then the parallelogram OACB.		

7.	[Maximum	mark:	7

Two players, A and B, alternately throw a fair six-sided dice, with A starting, until one of them obtains a six. Find the probability that A obtains the first six.														

8.	[Maximum	mark:	71

The region enclosed between the curves $y = \sqrt{x} e^x$ and $y = e\sqrt{x}$ is rotated through about the x-axis. Find the volume of the solid obtained.														

9. [Maximum mark: 7]

Given that $\alpha > 1$, use the substitution $u = \frac{1}{x}$ to show that

$$\int_{1}^{\alpha} \frac{1}{1+x^{2}} dx = \int_{\frac{1}{\alpha}}^{1} \frac{1}{1+u^{2}} du .$$
 [5 marks]

Hence show that $\arctan \alpha + \arctan \frac{1}{\alpha} = \frac{\pi}{2}$. [2 marks]

10.	[Махітит	mark.	61
IV.	<i>Muaximum</i>	mark.	OI

The ten numbers x_1 , x_2 ,..., x_{10} have a mean of 10 and a standard deviation of 3.

Find the value of $\sum_{i=1}^{10} (x_i - 12)^2$.

	•		•		 									 															
				-	 									 		-													
				-	 									 		-													
					 									 		-													

.....

.....

SECTION B

-13-

Answer all the questions on the answer sheets provided. Please start each question on a new page.

11. [Maximum mark: 20]

Consider $f(x) = \frac{x^2 - 5x + 4}{x^2 + 5x + 4}$.

(a) Find the equations of all asymptotes of the graph of f.

[4 marks]

- (b) Find the coordinates of the points where the graph of f meets the x and y axes. [2 marks]
- (c) Find the coordinates of
 - (i) the maximum point and justify your answer;
 - (ii) the minimum point and justify your answer.

[10 marks]

(d) Sketch the graph of f, clearly showing all the features found above.

[3 marks]

(e) **Hence**, write down the number of points of inflexion of the graph of f.

[1 mark]

12. [Maximum mark: 20]

A continuous random variable X has probability density function

$$f(x) = \begin{cases} 0, & x < 0 \\ ae^{-ax}, & x \ge 0. \end{cases}$$

It is known that $P(X < 1) = 1 - \frac{1}{\sqrt{2}}$.

(a) Show that $a = \frac{1}{2} \ln 2$.

[6 marks]

(b) Find the median of X.

[5 marks]

(c) Calculate the probability that X < 3 given that X > 1.

[9 marks]

13. [Maximum mark: 20]

(a) Show that $\sin 2nx = \sin((2n+1)x)\cos x - \cos((2n+1)x)\sin x$.

[2 marks]

(b) Hence prove, by induction, that

$$\cos x + \cos 3x + \cos 5x + ... + \cos ((2n-1)x) = \frac{\sin 2nx}{2\sin x}$$

for all $n \in \mathbb{Z}^+$, $\sin x \neq 0$.

[12 marks]

(c) Solve the equation $\cos x + \cos 3x = \frac{1}{2}$, $0 < x < \pi$.

[6 marks]